Introduction to Based Modeling For Social Scientists DAY 2

with your host:

Charles Doriean

Is an Agent-Based Model What You Need?

What Characteristics of the Behavior are Essential?

- Perspective A: use Occam's Razor simplest model possible
- Perspective 1: use Kitchen Sink put in everything
- Complex Systems Exhibit Opaque Attribute Contexts

Which Modelling Techniques(s) Can Capture Them

- Differential Equation Model: dynamic behavior with equillibria
- Statistical Model: predicting behavior through historical analysis
- Analytical Models: equation based with closed form solutions
- Real-World Experiments: scaled-down replica of actual system
- Agent-Based Models: open-ended rule-based computer simulations

Who Will Use the Model and for What?

- Personal Experimentation vs Student Pedagogy
- Prediction, Exploration, Explanation, and/or Existence Proof

What are your Skill/Time Restrictions?

Is an Agent-Based Model What You Need?

Benefits

- Implicit NonLinear Dynamics (Feedback & Dynamic Interactions)
- Spatially Explicit
- Heterogeneous and Adaptable Agents
- "Medium" Number of Agents
- Adaptable/Evolvable System Characteristics
- Exponential Increases in Computer Power
- Plagiarism is Encouraged and Rewarded
- Visualization Can Pump Intuitions and Impress Others

Limitations

- Difficult to Analyze Results and Causal Mechanisms
- Social Stigma Against ABMs
- Practical Limits of Computing Power
- Requires some Computer Programming Ability

Components of Agent-Based Models

Agents

- Rule-Based Behavior (Possibly Learning & Adapting)
- Interact with the World and Each Other
- Between Two and One Duotrigintillion Agents

Components of Agent-Based Models World

- Pick Your Dimensions: zero through infinity
- Bounded vs Wrapped (Rings and Toroids)
- Holds Values (Environment) which May Be Dynamic
- Divided into Discrete Space or Not

Components of Agent-Based Models

Scheduler

- Determines Order of Execution of Events
- Discrete Time Steps vs Event-Driven Updates
- Synchronous vs Sequential AKA Parallel vs Serial
- How Does the Model Know When It's Done

	P1A			P1 B				P1G					P2A			P28			P2C				PSA			P38			
			22 17 May 8 Jun			23 8 Jun 1 Jul			26 2 Jul 28 Jul					21 28 Jul 18 Aug			18 19 Aug 6 Sep			28 6 Sep 4 Oct				14 5 Oct 19 Oct		27 19 Oct 15 Nov			
T1 -X5	6ецр 7	c	MS SC 9	GN GSGT	ute:		CMS 7		40G 40G 5	l v	UCE luon 12		ALK HMF	1D	MacPLY 9		3	IGE DD 29		4		GMS	-Tu	cker			ICE IPID 9		TOTEM 12
T1 -GIF	56sp 7	R	ATLAS CMS RPG RPC 9 19			F	ALICE RPC 17			MWPC GS		TLAS CSC 16	ATLAS MDT 20		CMS 12		ALICE TOF 15		, RI		AS PC 1 8		R	LAS PC	5	ALICE RPC 12			
T1 -X7	6ецр 7	ľ		LHCS HCAL 7			LHCS VELO 7		иса пож 5	3	-a- I	R042 7		4 7	LHCb EGAL 7	6 2	LHOS BCAL 6	_		LHCb BCAL 8	RD42 7	CMO5	PS 6	U406 HCAL 6	8	3	1 0		VELO 12
T2 -H 2	50ap 7	Ī	н	MS B/HE 22	П		CMS 7		. "	AS F	CMS HBHE 7		Ī	CMS HF 28		CMS HBHE 7	Ch Pb	el 🖺	7	ACC#579 - 8	7	HGAL 7		C)	_	Č.	MS 9	CM Pine 8	
T2 -H4	94.p	DREAM CMS ECAL 11 11		AL						H		LHC! 12			CMS ECAL 7				CMS 7		CMS ECAL 13			GN BC 2		L			
T4 -H6	54.p 7	61	HECH	TLAS HEC/P 22	GAL		2 4		ATI		T	AGO est 14	ľ	ZDC 14	80 86 12	1		AT	LA	3-EMB0		FCA	_			50 RP 3			LIÇE ITS 19
T4 -H8	64ap 7	-	LAS	ATL Cont	ined		7		~ 5	Co	LAS ntired 12			TLAS Juon 12	ATLA: Content	a F	LAS ixel	ATU	-			ATU onbi	ned	П	П		TLA Muoi		ATLAS continue
T4 -P0	54ap 7		-	4842 22			7					b	62 52							NA60 45				A440 	4			NA.6	0
T6 -M2	-M2 500 CC		COMPASS 22			7						COMP 97			ss								COMPASS 28						

Components of Agent-Based Models

Other Common Elements

(random screen-size-y) set size 1.5 ;; easier to see set-initial-turtle-vars

set age random life-expectancy]

recolor-turtles

display

- Resources, Obstacles, Landmarks as "Agents"
- GUI, Graphs, Reports, Documentation, ...

```
;; these patches are the "best land"
  ask patches
   [ set max-grain-here 0
     if (random-float 100.0) <= percent-best-land
       [ set max-grain-here max-grain
          set grain-here max-grain-here ] ]
  ;; spread that grain around the window a little and put a little back
  ;; into the patches that are the "best land" found above
   [ ask patches with [max-grain-here != 0]
       [ set grain-here max-grain-here ]
      diffuse grain-here Offass Plot
                                                    Pens
                                                                        Class Histogram
                                                                                                                  Lorenz C
                                                                                                  Pensi
                                                                                                                                                                                             Pensi
  repeat 10
                                                            250 and some more
   [ di 250e grain-here 0.25 ]
                                                      low
                                                                                                         100
  ask patches
    [ set grain-here (100) grain-here
                                         ;; round grand gr
     set max-grain-here grain-here
                                         ;; initial grain
                                                                  s also maximum
                                                              Turtles
      recolor-patch ]
end
to recolor-patch ;; patch procedure -- use color to indicar
             $cala-golor yellow grain-here 0 max-grain
end
                                                               0
to setup<u>tur@es</u>
                                                                             Classes
                                                                                                                     Pop %
                                                                                                                                   100
                                                                                                                                                                      Time
                                                                                                                                                                                         102
 no-display :: so we don't see the turtles until they're recolored
 cct num-people
   [ setxy [random screen-size-x]
```

What are Agents Based Models Made of?

Space and Movement

- Space Measure (e.g. Distance) in 1D, 2D, or absent?
- Exogenous vs Endogenous Movers (Preferences vs Wind)

Complicated Agents

- CAs and Pure Networks Limit Agent Abilities
- Learning vs Adapting vs Evolving
- Agents using AI and internal models

Model Dynamics

- Agent Birth and Death
- Agents Exchanging Resourses and Information
- Agent-Environment Feedback

What are Agents Based Models Made of?

User-Defined

- Set by users during setup or dynamically
- Initial Conditions or Boundaries
- Takes a Range of Values (Sweepable)
- Define Range and Granularity

"Tweaked"

- Hidden Parameters (Hard-Coded)
- Set at Values that are Known to "Work"

Distribustions

- Select Type of Distribution (Normal, Exp,...)
- Select Distribution Parameters

Everything Must Be Decided