Introduction to Based Modeling For Social Scientists DAY 2 with your host: Charles Doriean # Is an Agent-Based Model What You Need? ### What Characteristics of the Behavior are Essential? - Perspective A: use Occam's Razor simplest model possible - Perspective 1: use Kitchen Sink put in everything - Complex Systems Exhibit Opaque Attribute Contexts ### Which Modelling Techniques(s) Can Capture Them - Differential Equation Model: dynamic behavior with equillibria - Statistical Model: predicting behavior through historical analysis - Analytical Models: equation based with closed form solutions - Real-World Experiments: scaled-down replica of actual system - Agent-Based Models: open-ended rule-based computer simulations ### Who Will Use the Model and for What? - Personal Experimentation vs Student Pedagogy - Prediction, Exploration, Explanation, and/or Existence Proof ### What are your Skill/Time Restrictions? # Is an Agent-Based Model What You Need? ### **Benefits** - Implicit NonLinear Dynamics (Feedback & Dynamic Interactions) - Spatially Explicit - Heterogeneous and Adaptable Agents - "Medium" Number of Agents - Adaptable/Evolvable System Characteristics - Exponential Increases in Computer Power - Plagiarism is Encouraged and Rewarded - Visualization Can Pump Intuitions and Impress Others ### Limitations - Difficult to Analyze Results and Causal Mechanisms - Social Stigma Against ABMs - Practical Limits of Computing Power - Requires some Computer Programming Ability ## Components of Agent-Based Models ### **Agents** - Rule-Based Behavior (Possibly Learning & Adapting) - Interact with the World and Each Other - Between Two and One Duotrigintillion Agents # Components of Agent-Based Models World - Pick Your Dimensions: zero through infinity - Bounded vs Wrapped (Rings and Toroids) - Holds Values (Environment) which May Be Dynamic - Divided into Discrete Space or Not # Components of Agent-Based Models ### Scheduler - Determines Order of Execution of Events - Discrete Time Steps vs Event-Driven Updates - Synchronous vs Sequential AKA Parallel vs Serial - How Does the Model Know When It's Done | | P1A | | | P1 B | | | | P1G | | | | | P2A | | | P28 | | | P2C | | | | PSA | | | P38 | | | | |--------------------|------------|----------------------------|------------------------------|---------------------|------|----------------------|--------------------|-----|-----------------------|---------|---------------------|-------------------|--------------------|------------------------|-------------------|------------------|-----------------------|-----------------|----------|----------------------|-------------------|-------------|---------------|-----------------------|---|------------------------|------------------|-----------------|-------------------| | | | | 22
17 May
8 Jun | | | 23
8 Jun
1 Jul | | | 26
2 Jul
28 Jul | | | | | 21
28 Jul
18 Aug | | | 18
19 Aug
6 Sep | | | 28
6 Sep
4 Oct | | | | 14
5 Oct
19 Oct | | 27
19 Oct
15 Nov | | | | | T1 -X5 | 6ецр
7 | c | MS
SC
9 | GN
GSGT | ute: | | CMS
7 | | 40G
40G
5 | l v | UCE
luon
12 | | ALK
HMF | 1D | MacPLY
9 | | 3 | IGE
DD
29 | | 4 | | GMS | -Tu | cker | | | ICE
IPID
9 | | TOTEM
12 | | T1 -GIF | 56sp
7 | R | ATLAS CMS
RPG RPC
9 19 | | | F | ALICE
RPC
17 | | | MWPC GS | | TLAS
CSC
16 | ATLAS
MDT
20 | | CMS
12 | | ALICE
TOF
15 | | , RI | | AS
PC
1 8 | | R | LAS
PC | 5 | ALICE
RPC
12 | | | | | T1 -X7 | 6ецр
7 | ľ | | LHCS
HCAL
7 | | | LHCS
VELO
7 | | иса
пож
5 | 3 | -a- I | R042
7 | | 4 7 | LHCb
EGAL
7 | 6 2 | LHOS
BCAL
6 | _ | | LHCb
BCAL
8 | RD42
7 | CMO5 | PS
6 | U406
HCAL
6 | 8 | 3 | 1 0 | | VELO
12 | | T2 -H 2 | 50ap
7 | Ī | н | MS
B/HE
22 | П | | CMS
7 | | . " | AS
F | CMS
HBHE
7 | | Ī | CMS
HF
28 | | CMS
HBHE
7 | Ch
Pb | el 🖺 | 7 | ACC#579
- 8 | 7 | HGAL
7 | | C) | _ | Č. | MS
9 | CM
Pine
8 | | | T2 -H4 | 94.p | DREAM CMS
ECAL
11 11 | | AL | | | | | | H | | LHC!
12 | | | CMS
ECAL
7 | | | | CMS
7 | | CMS
ECAL
13 | | | GN
BC
2 | | L | | | | | T4 -H6 | 54.p
7 | 61 | HECH | TLAS
HEC/P
22 | GAL | | 2 4 | | ATI | | T | AGO
est
14 | ľ | ZDC
14 | 80
86
12 | 1 | | AT | LA | 3-EMB0 | | FCA | _ | | | 50
RP
3 | | | LIÇE
ITS
19 | | T4 -H8 | 64ap
7 | - | LAS | ATL
Cont | ined | | 7 | | ~ 5 | Co | LAS
ntired
12 | | | TLAS
Juon
12 | ATLA:
Content | a F | LAS
ixel | ATU | - | | | ATU
onbi | ned | П | П | | TLA
Muoi | | ATLAS
continue | | T4 -P0 | 54ap
7 | | - | 4842
22 | | | 7 | | | | | b | 62
52 | | | | | | | NA60
45 | | | | A440
 | 4 | | | NA.6 | 0 | | T6 -M2 | -M2 500 CC | | COMPASS
22 | | | 7 | | | | | | COMP
97 | | | ss | | | | | | | | COMPASS
28 | | | | | | | # Components of Agent-Based Models ### **Other Common Elements** (random screen-size-y) set size 1.5 ;; easier to see set-initial-turtle-vars set age random life-expectancy] recolor-turtles display - Resources, Obstacles, Landmarks as "Agents" - GUI, Graphs, Reports, Documentation, ... ``` ;; these patches are the "best land" ask patches [set max-grain-here 0 if (random-float 100.0) <= percent-best-land [set max-grain-here max-grain set grain-here max-grain-here]] ;; spread that grain around the window a little and put a little back ;; into the patches that are the "best land" found above [ask patches with [max-grain-here != 0] [set grain-here max-grain-here] diffuse grain-here Offass Plot Pens Class Histogram Lorenz C Pensi Pensi repeat 10 250 and some more [di 250e grain-here 0.25] low 100 ask patches [set grain-here (100) grain-here ;; round grand gr set max-grain-here grain-here ;; initial grain s also maximum Turtles recolor-patch] end to recolor-patch ;; patch procedure -- use color to indicar $cala-golor yellow grain-here 0 max-grain end 0 to setup<u>tur@es</u> Classes Pop % 100 Time 102 no-display :: so we don't see the turtles until they're recolored cct num-people [setxy [random screen-size-x] ``` # What are Agents Based Models Made of? ### **Space and Movement** - Space Measure (e.g. Distance) in 1D, 2D, or absent? - Exogenous vs Endogenous Movers (Preferences vs Wind) ### **Complicated Agents** - CAs and Pure Networks Limit Agent Abilities - Learning vs Adapting vs Evolving - Agents using AI and internal models ### **Model Dynamics** - Agent Birth and Death - Agents Exchanging Resourses and Information - Agent-Environment Feedback # What are Agents Based Models Made of? ### **User-Defined** - Set by users during setup or dynamically - Initial Conditions or Boundaries - Takes a Range of Values (Sweepable) - Define Range and Granularity ### "Tweaked" - Hidden Parameters (Hard-Coded) - Set at Values that are Known to "Work" ### **Distribustions** - Select Type of Distribution (Normal, Exp,...) - Select Distribution Parameters Everything Must Be Decided